
A C++ POOLED, SHARED MEMORY ALLOCATOR FOR

THE STANDARD TEMPLATE LIBRARY

Marc Ronell

Electrical and Computer Engineering Department

University of Massachusetts

1 University Avenue, Lowell, Massachusetts 01854

marc ronell@uml.edu

Abstract

A pooled, shared C++ allocator developed for use with the Standard Template Library (STL) is
described. The allocator facilitates communication and control between multiple processes using data
organized in STL container classes. The open source system has been compiled and tested on the Linux
operating system.

1 Introduction

Research developing a computer architecture for an
accelerated road traffic simulation machine [7, 6]
yielded several important derivative research pro-
grams. The original research created an accelerated
road traffic simulator which is designed to be fast
enough to assist traffic management personnel in the
event of an incident in an urban network. The simu-
lator was determined to be at least 2 orders of magni-
tude faster than its software simulator counterparts.
The hardware simulator research led to the devel-
opment of two software products. The first was an
open source road traffic simulator, Trafix, which was
used for comparison with the hardware designs. The
second more widely applicable result is the pooled,
shared C++ allocator described in this article.

Trafix, an open source software simulator which in-
corporated and introduced the first allocator version,
is developed as a two process system. One process
is devoted to running a microscopic discrete event
simulation. The second process serves as the basis
for a future user interface to the simulator process.
A natural elegant programming solution allows the
user interface process to directly control objects in
the simulator process. Both processes share a com-
mon set of Standard Template Library (STL) con-
tainer classes which incorporate the pooled, shared
allocator. The shared memory allocator allows the
two processes to attach to the simulator objects di-
rectly. The user interface process can thereby ma-

nipulate and control the simulator. The first version
of the pooled, shared memory allocator depends on
initial global data structures being shared between
a process and its forked descendant. The first pro-
cess sharing the STL container classes forked the sec-
ond process allowing both access to the shared global
structures and memory segment mappings. Both
the current and original allocator systems are avail-
able as open source from the Sourceforge website,
http://allocator.sourceforge.net.

Potential users posted news forum requests for a sys-
tem modification which would allow two or more un-
related processes to share the same STL container
classes. The version described in this article was de-
veloped to serve that need. Two independent pro-
cesses can separately open and share data stored in an
STL container. The original code has been redesigned
to simplify and reduce the size of the software. An
added superclass allows users to open and map appro-
priate shared memory segments and to use semaphore
locks to control access to the shared data structures.
The system has adopted POSIX shared memory sys-
tem calls to foster portability across UNIX platforms.
The code was designed and tested on a GNU/Linux
system.

The design takes advantage of several concepts re-
cently added to the released version of the GCC com-
piler which make the shared memory allocator for the
STL simpler. One new concept employed is the use
of constant template parameters which, in the cur-
rent allocator design, are used to both uniquely de-

http://allocator.sourceforge.net

fine the type of the allocator and to pass key values
used to identify particular shared memory segments
and address mappings. The second new advantage is
the POSIX standard for shared memory which is now
adopted by the Linux Kernel. Additional POSIX im-
plementations are available in the kernel and GLIBC
libraries. POSIX implementations, by design, facili-
tate portable shared memory implementations.
One of the most important aspects of this work is
its leveraging of the well tested and dependable STL.
Following Software Engineering concepts, the project
adapts existing container classes enabling users to ap-
ply the STL containers as parallel processing commu-
nications and control functions elegantly.

2 Related Work

STL allocators and a description of their generic in-
terface are available from several sources. Specifically,
§ 19.4 of [11] provides an outline of a pooled allocator
class implementation. C++ allocators are defined in
the C++ Standard [1] in two sections. § 20.1.5 de-
scribes the generic allocator interface. § 20.4.1 dis-
cusses the class std::allocator. In this paper, a class
is an allocator if it conforms to the requirements of
section § 20.1.5.
The standard boilerplate interface common to all STL
allocators is well described in [2]. Given the existing
literature which explains the interface, attention is
devoted instead to the underlying memory allocation
approach. Unlike the example in [2], the deallocate()
method in this example needs both a pointer to the
memory to be recycled as well as the element count.
The underlying memory routines carefully track both
the size and positions of the data locations. Released
memory is recycled.

3 The Allocator Design

The allocator is designed to work with the Stan-
dard Template Library (STL) classes enabling multi-
ple processes on the same machine to share containers
and the objects which these containers hold.
STL allocators uncouple memory allocation from ob-
ject creation [3]. Specifically, allocators encapsulate
the low-level details of STL container memory man-
agement [2]. The STL container classes use alloca-
tor objects to provide memory for the data type of
the objects held by the container. When the STL
container class inserts a new object, the container
requests memory from the allocator, and then copy
constructs the requested object into the memory pro-
vided by the allocator. If the allocator provides
shared memory, the container objects are visible to
multiple processes. For consistent access, the sharing
actually requires that both the container and the data
objects stored within the container all be instantiated
in shared memory.
The allocator both provides and disposes of memory
for the STL container class data objects. The con-
tainer class requests a number of empty object loca-
tions from the allocator. The allocator provides the
requested space, returning a pointer to the first of the
adjacently allocated locations. When the container
is finished with the allocated memory, the container
calls a deallocate() method to recycle the locations.
The deallocate function takes a pointer to the start
of the memory locations and the number of objects
which describes the size of the memory to be recy-
cled. The allocator releases the memory by adjusting
its bit vector.

Overhead

STL Vector Object

Shared Memory Segment 1

STL String Object STL String Object

STL String Object

Overhead

Shared Memory Segment 2

Process 1 Process 2

Process 1
Memory Map Memory Map

Process 2

0x400d0000 0x400d0000

0x60000000 0x60000000

FIGURE 1: The Allocator Overview

The presented allocator design is composed of two ba-
sic layers. The bottom layer interfaces with the op-
erating system’s shared memory system calls. The
shared memory handled in the lower software lay-
ers contains objects shared between the various at-
tached processes. The lower layer therefore coor-
dinates memory management between multiple pro-
cesses. The upper layer of the allocator design inter-
faces to the STL container objects allocated by indi-
vidual containers. The upper layer is concerned with
memory management for each individual STL con-
tainer, coordinating memory access on a per container
basis.
One way in which this project differs from work such
as the Hoard allocator project [4] is that this project
specifically creates an allocator which is designed to
allow STL container objects to be shared across mul-
tiple processes. Projects like Hoard concentrate on
memory allocation speed.

3.1 The Allocator Structure

Figures presented in this paper follow the notation
semantics used by Booch [5]. Classes are enclosed
by dashed lines with the class name listed above a
solid, horizontal line. Class attributes and methods
are listed below the solid, horizontal line. Class re-
lationships are identified by connecting lines. A con-
necting line sourcing from a full circle indicates that
a class uses the attached class as a member attribute.
A line emanating from an unfilled circle indicates that
the attached class is used by the source class, for ex-
ample, through a pointer. Twin slashes through a line

on the source end indicate that the attached class is
a private member of the source class. Similarly, twin,
parallel lines next to an attribute or method within a
class indicate private export control on the respective
attribute or method. A single vertical line indicates
protected export control. Attributes and methods
without vertical lines are publicly exported. Inher-
itance is indicated by an arrowhead on a line which
points to the superclass.
An example of memory allocation using the alloca-
tor class is illustrated in Figure 1. Two processes are
shown. Process 1 has already created and initialized
an STL vector object containing string elements using
the allocator to place the vector in Shared Memory
Segment 1, and a second allocator to place the string
objects contained by the vector into Shared Mem-
ory Segment 2. Both shared memory segments are
mapped to the same virtual memory address space
in each process. Consistent address mapping allows
the vector, which is instantiated in shared memory,
to retrieve its elements in both processes. If pro-
cess 1 establishes and fills the vector with its original
three strings, process 2 can attach to the same shared
memory segment, map it identically into process 2’s
virtual memory and then proceed to use the strings
contained by the vector. Further, process 2 can add
or modify the contents of the vector. Mutex variables
are used to synchronize the process access to the vec-
tor object. In this example, separate shared memory
allocators are used for the vector container and string
data objects which the vector contains. For simplic-
ity, both the allocator and its contained objects can
be instantiated in the same shared memory segment.

allocator_bit_vector_t

head
bit_vec

bit_vec_sz
nelem

mark_items()
clear_items()

find_free_items()
find_single_bits()

find_bytes()
assigned()

find_prev_free_block()
find_next_free_block()

convert_block_to_addr()

11...n

locks

semid
lock()
unlock()

1 1

1
1

shared_memory_header_t

num_of_pages
page_size

mem_start_offset
object_size

shared_memory_addr
shared_memory_size

key

header_size

clear_pages()
mark_pages()

find_free_pages()
assigned()

get_page_offset()
set_key()

sync()

object_index

Shared

num_of_pages
page_size
segment_size
mem_ptr
allocate()
free()

1

1

FIGURE 2: The Allocator Classes which
process the shared memory segments

The shared memory segments are handled at the low-
est level of the allocator design by the three classes
illustrated in Figure 2. Higher level objects request
the shared object to create new or open existing
shared memory segments which serve as the source
of available memory for the allocator. A shared ob-
ject instantiates a shared memory header t object at
the beginning of new shared memory segments dur-
ing their initialization. The shared memory header t
object fulfills requests from higher level classes for
pages of memory from the shared memory segment.
The header also uses a locks class allowing users to
synchronize access to the STL containers instanti-
ated in shared memory. Each shared memory seg-
ment is subdivided into pages, which are allocated
to higher level classes and tracked using the alloca-
tor bit vector t class. These four classes, illustrated
in Figure 2, are used to process the shared memory
segments.
The allocator top-level classes are illustrated in Fig-
ure 3. The Pool alloc class consists of the generic

std::allocator interface described by Table 32 of the
C++ Standard [1]. Pool alloc is the C++ allocator
which can be used directly as a template parameter
by the STL containers. The class calls a Pool object
to request collections of memory locations where each
location is the size of a data element stored by the
STL container class. A Pool object requests mem-
ory segments from the low-level shared class as de-
scribed in Figure 2. The Pool object parses the mem-
ory segments into Chunks when the Pool alloc object
grows new memory. The Chunk class is a subdivi-
sion of a memory segment which tracks data element
sized pieces of memory fulfilling STL container re-
quests received by a Pool alloc object. Whereas the
shared memory segments are used by objects in mul-
tiple processes, class Chunk objects are assigned to
individual allocators within a single process. One ad-
ditional class, Multi Process Pool alloc sits above the
Pool alloc and is described later. These four top-level
allocator classes are illustrated in Figure 3.

pathname
first_elem_num
mem
num_of_segment_pages
prev
next

Chunk

set_first_elem_num()
get_first_elem_num()
get_element_size()

get_num_of_elements()

get_pathname()
set_pathname()

get_proj_id()

find()
mark()
clear()
allocate()
free()

get_element_offset()
element_num_to_pointer()

pointer_to_element_num() set_next()
get_next()
set_prev()

element_size
num_of_elements
memory_size
bit_vec_size
proj_id
segment_page_num

Pool_alloc

Pool<> mem
allocate()

deallocate()

destroy()
construct()

rebind()

allocator_bit_vector_t
shared

map_p

1

1

1

1..n

element_size

Pool

mem
chunks
grow()
mark()
clear()

compute_chunk_pages()
find_shared_memory()
find_shared_segment()

alloc()
free()

get_object_index()
set_object_index()

1

1

1 1

Multi_Process_Pool_alloc

attach()
get_object_index()
set_object_index()

get_proj_id()
get_segment_page_num()

lock()
unlock()

FIGURE 3: Top-Level Allocator Class
Structure

Summarizing the relationship between the shared and
Pool objects, the bottom level of the allocator con-
sists of a shared object which is used by multiple pro-
cesses. The shared object directly manipulates the
shared memory segments. A Pool object sits above

the shared object and works with an individual allo-
cator for a container. A Pool object obtains its supply
of memory from the shared object and amortizes the
cost of obtaining that memory by requesting more
than is needed and parceling out the extra for future

requests.

3.2 The Shared Memory Subsystem

In this section, the pooled, shared memory alloca-
tor class structure is described from the bottom up.
The bottom level classes, which handle the system
shared memory calls directly, are illustrated in Fig-
ure 2. The shared object is used to create, attach,
and destroy the shared memory segments. The orig-
inal design used System V memory calls to access
shared memory segments. With the current advances
in GLIBC, the GNU C library used by the Linux op-
erating system, the classes have been converted to
work with the POSIX standard calls shm open() and
shm unlink() [8, 9]. shared uses two method calls to
create/attach and destroy shared memory segments.
Method allocate() is used to create or attach to the
segments and free() is used to release the memory.
When opening a shared memory segment, the class
first attempts to open the segment as if the segment
already exists. The key defining the particular shared
memory segment is passed to the shared class as a
constant template parameter. If the open fails, the
class assumes that the shared segment does not yet
exist, and creates the segment for the first time, flag-
ging the new segment for initialization.
Once opened, the segment is truncated to the stan-
dard segment size using the ftruncate() system call.
After being opened and sized, the shared memory seg-
ment is next mapped into the process virtual mem-
ory space using mmap(). The memory segment is
mapped for both reading and writing, and is con-
figured to be shared. The shared segments are
mapped into each process’s virtual memory at the
location specified by a constant template parameter
value. Mapping the memory to the same locations
in all processes allows the STL containers in differ-
ent processes to access their elements consistently.
For shared segments which need to be created as op-
posed to just opened, the shared class instantiates
a shared memory header t object at the beginning of
the segment using placement.
Placement is a C++ mechanism which instantiates
an object at a specific memory location. For example,
if new (p) T(a,b) is invoked, T’s constructor with
parameters a and b is called creating an object of type
T at the memory location pointed to by p. The ob-
ject’s destructor can be called without releasing any
memory by p->~T(). The shared class uses placement
to instantiate a copy of the shared memory header t
at the beginning of the shared memory segment. A
process which subsequently attaches to the existing
shared memory segment knows to attach to the ob-
ject which contains coordination information.
The shared class method free() is used to release

the shared memory segment with the POSIX call,
shm unlink().

�����������������������������������

�����������������������������������

��
��
��
�

��
��
��
�

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����

�
�
�

�
�
�

�
�
�

�
�
�

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

shared_memory_header_t

allocator_bit_vector_t

Pages

FIGURE 4: The Shared Memory Segment
Structure

Once created or opened, the shared memory segments
are handled by their embedded header classes, which
are instantiated at the beginning of the shared mem-
ory segment. The header is followed by a bit vector
which is used to keep track of unused, available pages
in the segment. The allocatable memory space, which
is provided to higher level objects upon request, starts
after the bit vector and continues to the end of the
shared segment. An illustration of the shared memory
segment structure is shown in Figure 4.
The shared memory header t stores information used
by all processes accessing the segment. The header
keeps track of which memory from the segment is
available and which has been parceled out to the
various processes. Keys used to create the segment
uniquely identify it and are stored in the header
along with an index to a map which can be used to
store pointers logging currently active objects. The
header’s main function is to locate requested pages of
memory and allocate them, or recycle returned pages
of memory for reuse.

3.3 Pooled Allocator Subsystem

The Pooled Allocator Subsystem is a shared memory
allocator created to work with the C++ STL. The
allocator uses the Shared Memory classes described
in Section 3.2 and dispenses the shared memory in
element sized portions directly to the STL container
classes. Once the container classes instantiate their
objects using shared memory, the objects are visi-
ble to any subscribing process and can be accessed
through the STL container object. Attaching pro-
cesses need only define identical container typedefs
and attach using the same shared memory key and ad-
dress values. Both the key and the address are kept in
external char array constants which are used as con-
stant template parameters. These values are passed
down to the shared class and serve as keys when
opening and mapping the shared memory segment
into process virtual memory. The Pooled Allocator
Subsystem is composed of basically the three classes
Pool alloc, Pool, and Chunk which are illustrated in
Figure 3. A fourth class, Multi Process Pool alloc

is used to assist processes in attaching to existing
STL container objects instantiated in shared memory.
This section describes the operation of these four top
level classes in detail.

The lowest level of the Pooled Allocator Subsystem
is the Pool class. The Pool class stores its collection
of element sized memory in a list of Chunk objects.
Each Chunk object contains a quantity of element
sized memory locations which are provided directly
to the allocator. When the memory contained within
the Chunks list is depleted, the next attempt to find()
available memory triggers a call to grow() which then
attempts to replenish the depleted supply of mem-
ory. Method grow() is used to create a new Chunk
object and insert the new chunk into the Chunk list
managed by Pool. The grow() method requests its
memory from the Pool’s shared object attribute.

The Pool method, grow(), requests each subse-
quent Chunk object to be exponentially larger than
the previously requested Chunk size. The re-
quested chunk size may span multiple shared mem-
ory segment pages. The requests are made through
shared memory header t objects which search their
segments to satisfy each memory request. Once the
free pages of memory are located in the shared seg-
ment, they are marked as in use. Placement is used
to instantiate a Chunk object at the beginning of the
shared page set. The newly initialized Chunk is then
inserted into the Pool’s list of chunks.

The Pool object provides and recycles memory for
the allocator through its methods alloc() and free().
The alloc() method searches through a Pool’s Chunk
list for a chunk containing enough memory to sat-
isfy the allocator’s request. If memory is not found,
the function calls grow(), or upon failure by grow()
throws an exception. When a chunk containing the
required memory is found, the memory is marked as
in use and a pointer to the memory is retrieved from
the enclosing Chunk. The free() method is basically
the reverse of the alloc() method. The free() method
receives a pointer to the memory to be recycled along
with a count of the sequential elements which are to
be recycled starting at that pointer location. The
method locates the appropriate chunk which contains
the memory and calls the chunk to mark the memory
as now available.

The Chunk objects are very similar to the
shared memory header t objects in that they both al-
locate and parcel out memory. Chunks, however, only
work within one allocator object and the memory
units they handle are element sized. Shared memory
segments may be used and shared by multiple pro-
cesses. Unlike the consistent shared memory segment
size, the Chunk sizes themselves also vary. Their sizes
increase exponentially as more chunks are required by

a Pool object. Although the overall Chunk size may
vary, the memory the Chunk allocates to the Pool
class is always a constant data element size. Chunks
are stored in a doubly linked list. The memory layout
of a Chunk is illustrated in Figure 5. Like the shared
segment layout, the Chunk starts with an instanti-
ated Chunk object. The Chunk object is followed by
an allocator bit vector t object which is used to keep
track of the Chunk’s available element sized cells. Af-
ter the bit vector, the rest of the chunk consists of
data element sized memory units for allocation to the
STL container classes.

�����������������������������������

�����������������������������������

��
��
��
�

��
��
��
�

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�����
�����
�����
�����

�����
�����
�����
�����

�
�
�

�
�
�

�
�
�

�
�
�

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

�������
�������
�������
�������

�����
�����
�����
�����

allocator_bit_vector_t

Chunk Data Elements

FIGURE 5: The Chunk Structure

The Pool alloc class attributes and methods follow
the Standard definition. The one exception is an
added private Pool class attribute which is used to
allocate and deallocate memory. Pool alloc is the
shared memory allocator. The attributes and meth-
ods of the standard interface are well documented
by [2, 3, 10, 11] and the reader is referred to these
sources for the interface description. The Pool alloc
class is designed to work with the STL container
classes. One important difference between the allo-
cator described in some of the earlier related work
publications and the allocator presented here is the
number of additional template parameters required
by this new allocator. In addition to the element type,
two other constant parameters are passed into the
allocator. The two template parameters, alloc key,
and alloc addr are shown in Table 1. The alloc key
parameter is used to identify which shared memory
segment the allocator should open. The alloc addr
constant parameter defines the starting base address
where the shared memory segment will be mapped in
the process’s virtual memory.
The final class used as part of the Pooled Alloca-
tor Subsystem is the Multi Process Pool alloc class.
This class is a subclass of Pool alloc. Users create
Multi Process Pool alloc objects which in turn create
instantiated versions of the STL containers in shared
memory. These instantiated container objects are
maintained in an index which is stored in shared mem-
ory. The index consists of an STL map object which
uses std::basic string as the key and a data object
which holds a pointer and offset information to the
container class. Other processes use their own ver-
sion of Multi Process Pool alloc to attach to the STL
container class in shared memory.

template<class T,

mem_space::allocator_key_t alloc_key,

mem_space::allocator_addr_t alloc_addr=0>

class Pool_alloc {

};

Table 1: The Pool alloc Template Parameters

4 Conclusion

The first version of the shared memory allocator re-
quired the processes using the allocator to share the
same global data structures. The approach shared the
container objects between the parent process and its
children. Although this approach satisfied early re-
quirements, a pooled, shared allocator which is able
to share STL container class objects across unrelated
processes is more widely applicable and was requested
by the user community. This paper describes part of
the effort to satisfy these user requests.
The current version of the pooled, shared memory al-
locator has been coded and successfully tested with
unrelated processes. The approach allows the generic
STL container classes to organize shared data struc-
tures. Table 2 illustrates code used to instantiate
and populate a shared STL vector class. Three type-
defs are used to define the class types required to
instantiate the shared vector class. The first type-
def, my vector alloc t type, defines an allocator type
which provides shared, pooled storage for integer data
elements. The second template parameter, key val,
defines the specific shared memory segment to create
or open. The last template parameter, key addr, de-
fines the address in the process’s virtual address space
where the shared memory segment must be mapped
using the mmap() system call.
Once the shared, pooled allocator type is defined, the
actual vector class, my vector t type can be defined.
The second typedef, my vector t, uses the allocator
defined by the first typedef, my vector alloc t, cre-
ating a vector container type. This type uses the
Pool alloc allocator described in Figure 3 to gener-
ate integer data element storage locations in shared
memory. Finally, the Multi Process Pool alloc class
can be defined. The Multi Process Pool alloc ob-
ject is used to create the shared memory segment,
map the segment into the process virtual address
space, instantiate the container class in shared mem-
ory and then attach to the instantiated container.
The Multi Process Pool alloc type specifies a fourth
constant template parameter, key container, which is
used by secondary processes to gain access to con-
tainer objects, in this case, retrieving a pointer to the
vector object instantiate in shared memory. The same

class is used to synchronize access to the data vector
between attaching processes with mutex locks and to
clean up and release the shared memory segments and
semaphores when finished.

The code used to connect to the shared memory al-
located STL container is similar to the code used to
create the container. An example used to connect
to the shared vector is provided in Table 3. In this
example, the code starts with the same three type-
defs used in Table 2. The external char array keys
have identical values allowing the connecting code
to attach to the same shared memory segment and
map the segment onto the process’s corresponding
virtual address space. Once the connecting code has
attached and mapped the shared memory using the
Multi Process Pool alloc object, the attach() method,
assuming the vector has already been instantiated by
the code of Table 3, provides a pointer to the con-
tainer mapped to the key container value. For ex-
ample, a pointer to the vector holding the integers is
returned. The connecting class can then read, mod-
ify, add, and delete from the contents of the shared
memory vector. Mutex locks are used to synchronize
process access to the shared vector’s contents.

The shared, pooled memory class is proving to
be a convenient and well organized approach to
shared memory storage. The resulting alloca-
tor is open source and available from its website,
http://allocator.sourceforge.net. Additional
work profiling the code, reducing throughput bottle-
necks by adding coding optimizations, and generally
studying and reviewing the performance of the ex-
isting design need to be undertaken to improve the
current system. Future work will integrate POSIX
semaphores as they become available to Linux. An-
other target feature which follows intuitively from the
current work is an STL allocator which can be used
to coordinate shared memory between multiple ma-
chines as opposed to multiple processes all running
on the same machine. This added feature requires
an effective memory coherence design. The feedback
and encouragement provided by the open source user
community for this project is extremely valuable in
determining its direction and success. Feedback can
be provided through the project’s web page forums.

http://allocator.sourceforge.net

References

[1] Accredited Standards Committee. Working Paper
for Draft Proposed International Standard for In-
formation Systems Programming Language C++,
December 1996. 2, 4

[2] Matthew H. Austern. The standard librarian:
What are allocators good for? C/C++ Users
Journal, December 2000. 2, 6

[3] Matthew H. Austern. A debugging allocator.
C/C++ Users Journal, December 2001. 2, 6

[4] Emery D. Berger, Kathryn S. McKinley,
Robert D. Blumofe, and Paul R. Wilson. Hoard:
A scalable memory allocator for multi-threaded
applications. The Ninth International Conference
on Architectural Support for Programming Lan-
guages and Operating Systems, November 2000.
Cambridge, MA. 3

[5] Grady Booch. Object-Oriented Analysis and De-
sign with Applications. Addison Wesley, February
1994. ISBN: 0-201-89551-X. 3

[6] Marc Bumble, Lee Coraor, and Lily Elefteriadou.
Exploring CORSIM runtime characteristics: Pro-
filing a traffic simulator. 33rd Annual Simulation
Symposium 2000 (SS 2000), pages 139–146, April
2000. 1

[7] Marc D Bumble and Lee Coraor. An architec-
ture for a non-deterministic distributed simula-
tor. IEEE Transactions on Vehicular Technology,
51(3):453–471, May 2002. 1

[8] W. Richard Stevens. UNIX Network Program-
ming. Prentice Hall, Inc., Englewood Cliffs, NJ,
1990. ISBN 0-13-949876-1. 5

[9] W. Richard Stevens. UNIX Network Program-
ming, volume 1. Prentice Hall, Inc., second edi-
tion, 1998. ISBN 0-13-490012-X. 5

[10] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, 2nd edition, 1991. 6

[11] Bjarne Stroustrup. The C++ Programming Lan-
guage. Addison-Wesley, 3rd edition, 1997.

2, 6

#include <iostream>

#include <pooled_allocator.h>

#include <vector>

char key_val[] = "/allocate_key"; // needs a leading slash, see manpage.

char key_container[] = "container_lookup_key";

char key_addr[] = "0x400d0000";

int main(int argc, char** argv) {

typedef pooled_allocator::Pool_alloc<int,

key_val,

key_addr> my_vector_alloc_t;

typedef std::vector<int,my_vector_alloc_t> my_vector_t;

pooled_allocator::Multi_Process_Pool_alloc<my_vector_t,

int,

key_val,

key_container,

key_addr> temp_alloc;

my_vector_t* vec_ptr = temp_alloc.attach();

const int& segment_num = temp_alloc.get_proj_id();

const int& segment_page_num = temp_alloc.get_segment_page_num();

temp_alloc.lock(segment_num,segment_page_num);

vec_ptr->push_back(5);

vec_ptr->push_back(6);

vec_ptr->push_back(7);

vec_ptr->push_back(8);

temp_alloc.unlock(segment_num,segment_page_num);

for (my_vector_t::iterator it = vec_ptr->begin();

it != vec_ptr->end(); it++)

std::cout << "Vector val: " << *it << std::endl;

temp_alloc.shutdown();

return 0;

}

Table 2: STL vector example using the pooled, shared memory allocator

#include <iostream>

#include <pooled_allocator.h>

#include <vector>

char key_val[] = "/allocate_key"; // needs a leading slash, see manpage.

char key_container[] = "container_lookup_key";

char key_addr[] = "0x400d0000";

int main(int argc, char** argv) {

typedef pooled_allocator::Pool_alloc<int,

key_val,

key_addr> my_vector_alloc_t;

typedef std::vector<int,my_vector_alloc_t> my_vector_t;

pooled_allocator::Multi_Process_Pool_alloc<my_vector_t,

int,

key_val,

key_container,

key_addr> temp_alloc;

my_vector_t* vec_ptr = temp_alloc.attach();

for (my_vector_t::iterator it = vec_ptr->begin();

it != vec_ptr->end(); it++)

std::cout << "Vector val: " << *it << std::endl;

const int& segment_num = temp_alloc.get_proj_id();

const int& segment_page_num = temp_alloc.get_segment_page_num();

temp_alloc.lock(segment_num,segment_page_num);

vec_ptr->push_back(11);

vec_ptr->push_back(12);

vec_ptr->push_back(13);

vec_ptr->push_back(14);

temp_alloc.unlock(segment_num,segment_page_num);

return 0;

}

Table 3: Code example used to attach to shared STL vector

	1 Introduction
	2 Related Work
	3 The Allocator Design
	3.1 The Allocator Structure
	3.2 The Shared Memory Subsystem
	3.3 Pooled Allocator Subsystem

	4 Conclusion

